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Partially efficiency balanced (PEB) designs vere introduced by Puri
and Nigam C1976). These designs are available in varving replications
and/or varying block sizes. In the present paper ve demonstrate their
applications in various fields.

1. INTRODUCTION

Block designs are widely used in many fields of research. The most
common type being randomized complete block (RB) designs. When the number
of treatments is too large to preserve homogeneous conditions within a
complete block, either balanced incomplete block (BIB) designs or
partially balanced incomplete block (PBIB) designs are used. These designs
are restricted to equal number of treatment replications and equal block
sizes. This is a serious practical obstacle in many possible experimental
circumstances. To meet the requirements of the experimenter in
unconventional circumstances some designs with varying replicatipns and
varying block sizes are available in literature. .

A further inconvenience in the use of known incomplete block designs
is that they are not available for every parametric combination.
Sometimes, a design is available for v treatments in desired block sizes
and desired replications, but not necessarily for v+t or v-t treatments,
where t is some positive integer. If the number of treatments is such that

no suitable design is available, the experimenter usually discards one or
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more treatments, or applies a design (~r a larver number of treatments by
repeating some of the treatments more than once. This practice may
sometimes be uneconomical or undesirable.

In practice the researchers usually plan their experiments with the
objective of estimating and testing certain -ontrasts {comparisons) with
the maximum efficiency. The objective of comparisons changes from
experiment to experiment. An experimental plan which is optimal for one
type of experiment may not be suitable for another experiment. For
instance, whereas a BIB design may be quité useful for variety trials it
m;y be irrelevant for biological assays, factorial experiments and for
many genetic experiments.

The strategy should be to select a design which mecets the
requirements of experimental situations rather than selecting the material
to meet the requirements of experimental design without bothering about
the objective of a comparison. Before selecting a design, it is essential
that the researcher should know the basic properties of the design in
advance, particularly about the efficiency factor associated with various
basic contrasts and he should select a design having the pattern which
provides the estimate of the contrasts of major interest with maximum
efficiency in addition to keeping the analysis as simple as possible.

In the present paper, we shall discuss the design patterns suitable
for various experimental circumstances. The design satisfying . these
patterns will have simple analysis in addition to estimating contrasts of
major interest with maximum efficiency. However, we shall not discuss the
method of their construction here.

2. NOTATIONS AND SOME DEFINITIONS

Consider a block design D(v,b,r,k) with v treatments arrangesd in b

blocks of sizes kx' oy kb such that the i-th treatment be replicated r
times, i = 1,..., v. Let
r= (r’ Pl e k = Tk kb' :
R = diag(r]..... vy K = dluﬁ(k!,.. r kb)'

and let n = Zz At : kj denote the numier ol exper mental units.

i iy r, =Ir for all i, the i =ign is ~allied ‘qui-replicated and 1 f kj =
k for all j, it is called cqu!-block 17zed tor proper). Let N (=ni ) be
the vxb incidence matrix. where n‘J denotes tie num er of times the i-th
treatment occurs :in the j-th .lock. Th: design is called binary if nx
takes values 0 or 1 for all i and j, othcerwise 1t 1s called a non-binary
design.

Under the urual 1 near model the 1. +ct squarcs equation for the

vector t of treatment paraimetcrs takes ile | .rm
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where C = R - NK 'N’ and @ = T - NK 'B with T and B being vectors of
treatment and block totals, respectively. The matrix C is singular and its
rank is equal to v - 1 for a connected design. Here we shall restrict our
discussion to connected designs only.

Tocher (1952) has defined the matrix @ ' as

0! =R - NK!N' + (1/n)rr’ = C + (1/n)rr’ . (1)

This matrix is non-singular for a connected design. The estimate of a
treatment vector t can be taken as

t=024Q (2)
and the variance-covariance matrix of t is

v(;) = o’ ’ . (3)

where o is the intrablock variance of a single observation.

The main task of the analysis of a biock design is to find the
inverse of @ '. cCalinski (1971) has‘prupused an iterative procedure of
inverting @' and has shown that

= ] o 4
Q= (I+3 MR,
h
where

M, = M- (1/n)ir’, M= RTINKTIN. (4)

This iterative procedure may be gquite useful in the analysis when ot

is unstructured. But when Q@ ' is structured, then it may be easier to
determine the pattern of b through direct methods. Pearce (1960)
classified designs according to the patterns of 0

The matrix Ho plays an important role in the analysis and in
determining the properties of a design. The simplification of the general
formula depends entirely on the pattern of this matrix which also
determines the efficiency factor of the design. Further, its relation to
the treatment contrasts is also useful in designing block experiments with
specific desirable properties, We shall study some of the properties of
this matrix here.
Definition 2.1. A linear function s8’T, where T is a vector of treatment
totals, is called a treatment contrast if s'r = 0. It will subsequently be
written as s.
Definition 2.2. A linear function c’t of treatment parameters is called a
parametric contrast if c’l1 = 0.

It follows from the paper of Jones (1959) that if for some treatment
contrast s8'T, s is the right eigenvector of M (or Ho) corresponding to
the eigenvalue p, then the parametric contrast c’t is estimated with the

efficiency factor | - u, where ¢ = Rs. The treatment contrast s and the
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corresponding parametric contrast ¢ = Rs were termed as basic contrasts by
Pearce et al.(1974) due to the special role played by them in the
analysis of the block design.

Definition 2.3.(Puri and Nigam, 1977) A block design D(v,b,r,k) is said to
be partially efficiency balanced with m efficiency classes (PEB(m)) if the
complete set of v - 1 mutually orthogoial basic treatment contrasts can
be partitioned into m disjoint classes such that the efficiency factor
associated with every contrast of the i-th class is (1 - u‘), where Ko i
=1, ..., m, are eigenvalues of Ho with multiplicities Py ET R v 1 65

For a PEB(m) design all pi contrasts s ., j = l,....pl,belbnging to

iJ
the i-th class satisfy

Hoslj = u‘s‘J, Jre= By, pt. (5)

The parameters of a PEB(m) design can be written as

v, b, r,'k, ”‘l p‘v L.y i =100y m, (6)
where
2 -1
- ’ ’ 3 -
L, = ? x(s‘insiJ) s‘JstR, fiy Sl e § (7)
For a PEB(m) design the matrices M and Ho have the spectral

decompositions
M = Xu‘n.l and M = % uL (8)

respectively, where Py = 1 and Lo = (1/n)1r’. The matrix @ for a PEB(m)
design is

’ m
Q= [I +L fu /oL - Mi)]Li]R" (9)

imy

and the sums of squares attributed to treatments is

f: (17(1 - p 1)1Q’L R Q.
i=1
A particular class of PEB designs, where N takes only two distinct
values p and 0, with multiplicities p and v - p - 1, respectively, is
called a simple PEB (S-PEB) design. If ! for all i, the design is
called an efficiency balanced (EB) design (Puri and Nigam, 1975, and
Williams, 1975).

We . draw the relationship among some block dasigns in Fig.l. The

symbol "A > B" means that A implies B under c; "A <==> B" means that

A is equivalent to B; "A < > B" means that A and B are equivalent under

c
C.
Remarks. The notion C-designs was introduced by Saha (1976), and a

totally balanced desizn by Calinski (1971). (i) A partially balanced
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Fig. 1. The relationship among some block designs

[ PEB designs with m efficiency classes]

m = 1 m= 2 G 0
with
il 0 [S-PED designs] <==. [C designs!
/ ‘r///”/”sr s
Totally
balanced| <==> |ED designs| [m associate PBIB designs|
designs -
equiblock-sized
equireplicated TR B |
binary i B
\
[Variance balanced] binary
designs eguiblock sized [BIB designs]

incomplete block (PBIB) design is an equi-replicated. equiblock-flzed
binary PEB design (cf. Puri and Nigam, 1977). (ii) A supplemented block
design, and a (partially) balanced factorial experiment, a linked block
design, and a block design having a general balance property of Wilkinson
{1970} are a special case of PEL designs. (iii) It is clear from the
detinition of a PEB design that .y connected block design is a special
case of a PEB design with at most + - 1 vffi?ivnc\ classes, where v is the
number of treatments. In this sense, o EFB design is too much general.

Weo shall now present the applications of a PEB design in various

ficlds. 'he pr perties ana wcothods of their construction are available in
Puri and Nigam (1977, .1978, 195.', ‘ta! (1980), Nigam and Puri (1982},
Ceranka (1983), Puri (19813}, Puri anu h .evama (1984, 1985), Khagevama and

Puri (1985a, 1985b). Since a design uniquely determines its incidence
matrix and conversely, the design and its incidence matrix will be denoted
by the same symbol.

3. PEB DESIGN AS FACTORIAL DESIGNS

In factorial experiments, we simultaneously study the effect of a
number of factors, each with several levels. Consider a factorial

experiment with h factors F‘,.... F the j-th factor being experimented

h'
with -J levels, j = 1,..., h. Any incomplete block design with v =
mm,...m treatments can be utilized to conduct a MmN m,Xe..X W
factorial experiment by replacing the i-th treatment by the i-th treatment

combination.
In factorial experiments the interest shifts from elementary
contrasts to the main effects and lower order interactions and thus the

conventional incomplete block designs, such as BIB and PBIB, designs may
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or may not be suitable as factorial designs. For instance, a BIB design
with v = m m,  treatment combinations has little utility as a mxm
factorial, because both the main effects and interactions are confounded
with block differences to the same extent. A regular or a semi-regular
group divisible PBIB design with v = mlmz treatments is superior for a
m X m factorial as compared to a BIB design with the same number of

t;eat;ents, because these designs do not only estimate one of the main
effects free of block effects but also require a lesser number of
replications. '

Definition 3.1. A block design is said to have an orthogonal factorial
structure if the, adjusted sum of squares due to treatments in the block
design can be partitioned orthogonally into a sum of squares corresponding
to the main effects and a sum of squares corresponding to the interactions
in a factorial experiment.

John and Smith (1972) and Cotter et al.(1973) have shown that if the
matrix @ of an incomplete block design has cyclic structure, then this
design has factorial structure and therefore can be utilized as a
fectotial experiment. Since for most of designs the matrices M and @ have
the same pattern, PEB designs with matrices M having cyclic patterns can
be used as factorial experiments.

Puri and Nigam (1976) have defined the balanced factorial experiment
(BFE) as a generalization of the concept introduced by Shah (1960).
Definition 3.2. A factorial experiment with vVv=m mz...mh treatment
combinations is called a BFE if the following conditions are satisfied:

(i) the i-th treatment combination is replicated 2 times,

(ii) the j-th block has k plota; J = 1,..45 by

(iii) estimates of contrasts belonging to different interactions are
uncorrelated with each other,

(iv) a "complete balance" is achieved over each order of interaction.

According to Puri and Nigam (1976), a "complete balance" is achieved
over an interaction (effect) if the relative loss of information for each
contrast belonging to that interaction is the same. For instarice, we say
that complete balance is ackieved over interaction FC'FCZ...FCh, where el
= 0 or 1, if all the (m —l)cx(m -1)c ...(m =T contrasts belonglng to
this interaction have the same relatxve loss of information.

Throughout this sectzon the symbolic direct product 6 ® e ®...® 9
will be used to order lexicographically the v treatment comblnatlons. The
matrix M of a BFE with v = mm...m treatment combinations has the

2
spectral decomposition

h
M=3 . z He L ..c Lc e €0
d=0 Ci"...ﬁchid 1 h 1 h

where L =L . jeLs®t
CAERRTN 1 h
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L =

; 4 (11)

- ’ i =
{IJ (IINJ)laJ} if ¢ g
(I/Nj)la; otherwise

and a;l = NJ.
It clearly follows from the structure of M that a BFE is a PEB design
with at most 2" - 1 efficiency classes. Many of these classes may
coincide.
Puri and Nigam (1976) have introduced a property (A*) as a
generalization of a property (A) of Kurkjian and Zelen (1962, 1963).
Definition 3.3. An incomplete block design N with parameters

V.ER N _..:8 5, b, 'r = (a‘O...Onh), k, p

12 h C «usC

1 h

- s * 2 .
is said to possess the property (A ) if the matrix M has the spectral
decomposition

' )
M= ¥ N 8lc,seees ch)Dfle...oD:h, (12)
d=0 C‘O--.Och-d

where g(ct,..., ch) are constants depending on cJ and

- ={ I, 1 e, =.1,

4 (l/NJ)Iaj otherwise.

An incomplete block design possessing the property (A*) is clearly a
PEB design with at most 2h - 1 efficiency classes, many of which may
coincide. The designs of randomized block (RB), orthogonal (0), BIB, EB,
GD, Lz’ as well as Kronecker product designs such as cubic, hypercubic,
extended group divisible, rectangular and extended rectangular, and also
the designs obtained from them by merging treatments suitably possess the
property (A*). It can easily be shown that the matrix M of a block design
possessing property (A*) can be expressed as (10) and therefore these
block designs can be used as BFE. These designs have a very simple
analysis. It may be remarked here that the incomplete block designs with
property (A) form a subclass of the incomplete block designs of John and
Smith (1972) having the factorial structure and it may be noted -that the
design with the factorial structure may not be fa~torially balanced in

the sense of Puri and Nigam (1976).

4. PEB DESIGNS AS MATING DESIGNS

In this section we shall demonstrate the use of a PEB design in
genetic experiments. Diallel crossings are becoming increasingly popular
in plant breeding programs. Basically, there are two types of
distinguishable diallel crossings. In diallel crossing of type I
(Hinkelmann and Stern, 1960) or factorial mating (Cockerham, 1963), m male
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lines and f female lines are crossed with each other, i.e. there are mt
matings in a complete diallel crossing of this type. In another type of
aralle! cros:zing, called type II, n parents are crossed among themselves
and there are n(n - 1)/2 matings if the reciprocals and the parental
inbreds are ignored.

In a complete diallel, the number of crosses increases with the
increase in the number of parents, which ¢recates the problem of resources
and manageability. This leads to partial diallel crossings (PDC) where all
the matings are not made. Here we shall deal with PDC of type 1.

Suppose there are m male lines and f female lines. The PDC of type I
are defined such that each male line is crossed with 4 females and each
female line is crossed with males. The total number of crosses is n, n
= mr-= fr’, each cross having p offsprings. Hinkelmann (1966) proposed an

Xplicit procedure of constructing PDC of type I from an 1ncomplete binary
block acesign. His procedure is as follow.

Consider any binary incomplete block design N with parameters vy by
r. k. Tdentify the male parents with treatments and female parents with

blecks and include a cross (i x J) in the PDC if and only if the i-th

treatment occurs in the j-th block of the design. We get PDC with

paramet&érs m = v, f = b, r = r, and L k. If we ‘identify males with
m

block= and females with treatments we get a PDC m = b, f = v, T 15 Ky

and r S Xs

For the analysis of such PDC Hinkelmann (1966) has considered the
usual two-way classification model, with unequal frequencies given below,
under the assumption that Vs M 814 and e‘J are distributed with mean 0
2

and variances a:, gL a:. and o respectively. The model has the form

y‘J. = u o+ vj + HJ + rk + qu + eiJ.,
R R O I e IR RIS S S e S

where ¥ B, is the yield of the (i x j)-th cross in the k-th replication if
the (i x j)-th cross is included in PDC, p is a general effect, e is the
general combining ability (gca) effect of the i-th male line, wJ is the
gca effect of the j~th female line, r is the k-th replication effect, s‘J
is the specific combining ability of the (i x j)-th cross, and eth is a
random error.

Let N (=n‘Jl denote the mxf incidence matrix of the PDC, where nlJ =
1 if the (i x j)-th cross is performed and 0 otherwise. For male and
female lines the following matrices can be defined:

o' = I - (1/r NN’ 4 (1/m)1 1",
o' = r I, = (/T NN + (1/£)1 1),

In the PDC we are interested in estimating and comparing the gca
effects of male Iines as well as of female lines, therefore the knowledge
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of the patterns of both the original design N and its dual design N (=
N’) is essential for the construction of PDC of type 1. Hinkelmann (1966)
has constructed PDC by using BIB designs and PBIB designs with two
associate classes whose duals are of the same type. He has listed about
100 PDC for various values of m and f (< 30) and o and 28 (s 10). His
list is not exhaustive and thus the PDC are not available for many
parametric combinations, and, on the other hand, they need very‘often a
large number of crosses.

We state a theorem due to Kageyama and Puri (1985a) on dual design
without proof.
Theorem 4.1. The dual of a PEB design with parameters v, b, r, k, py , Py

1

Ll. i=1,..., my is a PED design having at most m + 1 efficiency classes

with parameters

.

v =by, b =v, r =k, k =r, p =p,

L: = (l/yx)K'lN’L‘R'lN, T GO v b

Hence by the above theorem the duals of all incomplete block designs
are known. Note that
(i) the dual of a symmetrical BIB is again a symmetrical BIB and the
dual of a non-symmetrical BIB is a S-PEB design,

(ii) the dual of a EB design will be a EB or a S-PEB depending on
whether v = b or b > v, respectively, .

(iii) the dual of a S-PEB design is a EB or a S-PEB depending on
whether p = b - 1, or p < b - 1, respectively,

(iv) the dual of a PBIB(m) is a PEB with at most (m + 1) efficiency
classes.

Since the duals‘of every BIB, PBIB and PEB designs are known, any
available binary block design can be used as PDC. Even a binary PEB design
with varying block sizes and varying replications can be used to construct
PDC of type I, where the i-th male line is crossed with T 121000y m,
females, and the j-th female line is crossed with k , j = 1,..., f, male
lines. As u:s are known for almost all PBIB and known bEB designs, the
experimenter will have no problem in making a selection of the most
efficient '‘PDC with desired parameters. Some optimal PDC based on BIB and
S-PEB designs were presented by Puri et al.(1986).

5. PEB DESIGNS FOR BIOLOGICAL ASSAYS

Biological assays (bio-assays) constitute a field where the PEB
designs can be wused quite effectively. Unlike the situations in
agricultural and industrial experiments, in bio-assays not all contrasts
of treatment (dose) effects are of equal importance. For instance, in
parallel 1line (PL) assays the contrasts of major importance are
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preparation (L ), combined regression (L ) and parallelism (L ). The first
two provide an estimate of relative potency while the thlrd one is
important for making valid1ty tests. Consequently, it is desirable that
the design for PL assays should estimate at least these three contrasts
with maximum efficiency. Thp conventional incomplete block design like BIB
and PBIB designs are not useful for PL assays as important contrasts get
confounded with block differences in these designs. In the present section
we shall discuss the desirable design patterns for PL assays which
estimate important contrasts with maximum efficiency. For the design
putterns for the slope ratio and multiline assays reference may be made to
Gupta (1984) and for the quadratic parallel line assay reference may be
made to Seshagiri (1974).

In a PL assays with v = n‘ + nt preparations, where m and m are the
number of doses for standard and test preparations, respectlvely, the (v =

1) degrees of freedom can be split into single degree of freedom contrasts

LP, Lh and L. h = 1,2,... , where L and L denote the sums and
differences of the h-th power regression. It is useful to subdivide L and
I further into odd and even numbered contrasts L g I and
h n+1 2n+2’ 2n+1
e respectively.
If e m = m, then the PL assay is called symmetrical (SPL),.

otherwise it is an asymmetrical (APL) assay. For the sake of simplicity we
shall here discuss the desirable pattern of incomplete block designs for
SPL assays. Let S aeeey s, and t 09,5 o0p t- denote the doses of standard and
test preparations, respectxvely, on the logarithmic scale. Let the doses
be arranged in the order

a “ee a
1! ’ ’

a a > -, A
p’ T2p’ T2p-1 H

p+1

if the number of doses is even, say m = 2p, , and in the order

& vicors Lol a ,a ool &
$2 A i vapeat Lap ’ Tpet

if the number of doses is odd, say m = 2p + 1, where a= s, or t

The coefficients of LP. LG*‘, L;n", LG’a and L;n02 can be writgen
as
1 =01 =1)7e L,
P m
- ’ . o5 o ’
et (1 1)'e U., Lin't = (1 1)’e U_,
= ) * = B 1
12n02 = e V_, 12n02 = th'e V_,

respectively, where U and V are m x 1 vectors satisfying U 1 = V 1 =
0. Here U and V are orthogonal polynomials of degree 2n + 1 and 2n + 2,
n=0, 1,..., i.e. odd and even order polynomials. If m = 2p, then U ‘and
V_ can be written as

U = (1 -1)'@ x , R s ! v,

= P m
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where xp and yp are p x 1 vectors satisfyinay;lp ‘ 0. If m = 2p ¢+ 1 ,
then U- and V- can further be written as

. -

\ £
u, = [ -1)'e x’, 01°, v, = [SL 1)%e y', 01’

h 2 = 0. :
where yplp

For instance, if m.= 4, then 7 mutually orthogoﬁnl contrasts for m =

m, E 4 PL ﬁssay can be wr%tten as
lp = (1, 1, 1, 1, -1, 25 =Nl )’ ,
1‘ = (3, 1, -3, -1, 3, BENSEEEE])’,
1; = (3, 1, -3, -1, -3, SELSNENY,) °,
L= (1, -1, 1, -1, 1, SECEEEEEY)’,
1= (1, -1, 1, -1, -1, SUCHEEEEN )’ ,
13 = (1, -3, -1, 3, "1, SSSEEEEGEN3)’,
1, = (1, -3, -1, 3, -1, SPNEE=3)’.
Here D (3, 1, -3, =-1)*' = (1 -1)'e (3 g’ ,
= {1:5=1, =15 =1)*"2 (1 1)'e (1 =-1)’,
X = (3 1) and ¥, = (1 -1)*

for the first and second degree polynomials, respectively.
We state the following after Gupta et al. (1985).
Theorem 5.1. In a SPL assay with the matrix M having a pattern

[

the contrasts L , L and L° will be estimated with full efficiency
P 2n+1 2n+1 v

if the m x m matrices A and B have the pattern

A =J9®A and B =J ®B
m 2 P com 2 P

“in the case of even m (m = 2p), and

J ® A d J @B d
A = [ 2 ey ‘] and B = [ I - ‘]

L ’ L) ’
d1 a d2 a,

in the case of odd m (m = 2p + 1), where Ap and Bpare P X p matrices, dl

and dz are 2p x 1 vectors of ncn-negative real numbers and a , a, are

positive constants and functions of design parameters. Further, if AUi =

oU and BV = 8V then L and L' are estimated with losses a + 8 and
m m m 2n+ 2 2n+2
a - 3, respectively. In this case all the bio-assay contrasts are basic

contrasts and design is a PEB with at most three efficiency classes.
Particularly, if a = 8 (or a = -8) then L;n
block effects and the design is a S-PEB.

(or LT ) becomes free from
+2 - 2n+2

Example 5.1. Let m = 2p, then the design with blocks

(s‘, szp_‘.‘, tJ, t]p-J’l)' i=1l,000y Py
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s
B 1

is a S-PEB design with parameters v = 2m, b = pz, r =p, k=4, p=1/2
and with the matrix M of the form

] rJze 1E J20 J
M = (1/xk) . Rl

: Jze JP rJ:e IP

Many methods of construction of an incomplete block design for PL
assays having a pattern of theorem 5.1 have been presented by Nigam and
Foopathy (1985) and Gupta:et al. (1985). PEB designs esiimating only LP,
Lz and L: with full efficiéncy may not have the pattern of theorem 5.1.
These designs were constructed by Kyiwin and Dey (1980) by trial and
error, Systematic methods of construction of such designs for APL assays
have been discussed by Puri and Gupta (1985a, 1985b, 1986) and Puri et
al.(1985).

6. PEB DESIGNS FOR COMPARATIVE TRIALS

In many comparative experiments there may be a treatment
treatments), usually the control (/controls), which may be logically at a
different footing from the rest of treatments and the experimenter may
like to include it (or them) at least in every block. For instance, in a
factorial experiment, a control or a treatment combination with doses
higher than the experimental ones, or a fresh treatment is included.

ezigns such as reinforced (Das, 1958), supplemented balanced (Pearce,

1960}, orthogonally supplemented block (Calinski, 1971), supplemented
tleck 'falinski and Ceranka, 1974, and Puri et al., 1977) and augmented
factorial (Puri et al., 1984) have been developed for these circumstances.

The basic approach in all such designs is to supplement any standard
design with a control (or controls). In these designs interest is
centered on contrasts involving control and other treatments. Other
contrasts involving only basic treatments or only controls are of less or
of no importance.
| Puri and Kageyama (1935) discussed the most general case of
supplemented PEB designs and most of the work referred to the above
emerged, as particular cases, of their work. However, we shall here
present a particular case of these designs because of their simplicity and
their importance.

l.et N be the incidence matrix of an equi-block sized PEB design with

parameters v, b, r, k, p , p , L, i = 1,..., m. Add one or more (say s)

1 i i
supplementary treatments to each block of the design N. Let the i-th
supplementary treatment be added a, times to every block of the basic

design N. Then the incidence matrix of the resulting design is

. N )y
N = , where a = (u’...., i
a 4 3

@



41

It can easily be shown that the matrix H; corresponding to N* has the

pattern

- - -
w3} Hy Li'
i=1

(o]

P LR k,)IM, 0O
o 0

where 4} = ku /(k + k), L] = diag(L , O) and k = 1’a. That is, N' is a
PEB design with at most m + 1 efficiency classes with idempotent
matrices L: and eigenvalues u:.

Since a BIB design with parameters v, b, r, k, A is a trivial PEB
design with parameters v, b, r, k, g = (r - 1A)/Tk, p=v -1, and L
= (I - {1/v}11’), the supplemented BIB design obtained through the above
procedure is a S-PEB design. If B S 1 for all i, then we get, as a
particular case, the design of type A given by Corsten (1962). If s = 1,
then the designs fall in the category of supplemgnted balanced designs of
Pearce (1960). ]

If-sil, J ='1,.... pl. denote the p1 contrasts of the i-th class
which were estimated with relative loss Hs then these contrasts are
estimated with an efficiency factor 1 - u:
greater than 1= By the efficiency factor associated with these

contrasts in the original design. Any contrast between the supplementary

in the new design which is

treatments and an intergroup contrast between the original treatments
versus supplementary treatments is estimated with the efficiency factor 1.

In the supplemented designs obtained above, every supplementary
treatment has to be included at least once in every block and therefore '’
the nuﬁber of replications required for supplementary treatments becomes
large. This could be inconvenient in many experimental situations,
especially when a large number of trials are.to be conducted over a number
of years and' locations. This is all the more so when high costs of control

treatments are involved. Utilizing the availability of a-resolvable PEB
designs and more than one control, Puri and Kageyama (1985) have given
supplementary designs for comparative trials where the supplementary
treatments heed fewer replications and at the same time every
supplementary treatment occurs an equal number of times with every
treatment of the basic design to ensure that the contrasts 4involving
supplementary treatments and ceontrol are estimated with maximum
efficiency.

An equi-replicated and equi-block sized PEB design is called
a-resolvable if the blocks can be partitioned into t sets of 8 blocks, so
that the set consisting of B blocks contains every treatment exactly a
times. For an a-resolvable PEB design we have b = t3, r = at.iva = k8.

We obtain N* by adding s supplementary treatments so that the first
supplementary treatment is added to all the alB blocks of a, sets, the
second supplementary treatment to azB blocks of a, sets and so on so, that
) g

1212, =t. The incidence matrix N° of the resulting design is '’
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. [ N ]
N =
dlag(laIB...., 1a B)
and Mo has the pattern
b {k/(k + 1))Ho (o]
& 0 {(1/(k + 1)}I_ - (1/t)1a’ }
where a = (al,.... a.)’. Hence N' is a PEB design with at most m + 2
efficiency classes with idempotent matrices L: = diag(Ll. ), 2 By
A 1
m, ' L., = diag(0, I - {1/t}1a’), O B R aat AR

{1/b(r+1)}1r*’ and losses of information u: = kul/(k + 1), n:.: 1/(k+1)
and u:’z= 0.

In the resultant design the contrasts between the basic treatments
are estimated with the relative loss u:, the contrasts _ between
supplementary treatments with the efficiency factor k/(k + 1), and the
intergroup contrast between two sets of treatments with full efficiency.

The generalization of this result in many directions has been
dealt with by Puri and Kageyama (1985). They have also demonstrated the

utility of (al...., a.) resolvable PEB designs to construct supplementary
designs.

" 7. PEB DESIGNS FOR SCREENING TRIALS

In plant breeding experiments with new strains or in plant
protection experiments with new pesticides, herbicides, soil fumigants
etc. a major problem is the screening of new strains of chemicals. In
these experiments we generally come across the situations where limited
material just sufficient for making one or two observations for new
strains or chemicals is available. For such cases the augmented designs
introduced by Federer (1961) are extensively used in practice., These
designs are obtained by augmenting any standard design in check (standard)
treatments with new strains (treatments) requiring a single observation.
Federer (1961) considered the most general case. His designs are available
in Varying~block sizes also. He has given the analysis by the method of
fitting constants which is quite cumbersome and time consuming. We shall
now discuss some particular cases of augmented designs which are generally
used in practice and have simple analycis being PEB designs.

Case I. Check treatments in RBD.

Let N be the incidence matrix of RBD with v treatments and with r
replications. Let there be s = ub new strains (treatments) available
Eequiring a single observation. Obtain N° by augmenting each block with a
new treatments, so that each new treatment has a single replication. The
incidence matrix of the resultant design is
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: 118 18
N =
Ib@ 1

and the corresponding matrix H; has the pattern

n; = {1/(v + a)}diag(0, [I, -{1/b}J l® J ).

Hence N' is a S-PEB design with parameters v o= v o+ s, b* = b, r’ =

(b1’, 17)*, k" = vea, p’ = a/(vta), L'= diag(0, {1/a}(I -(1/b}J 1o I ), o’
= b - 1.

In this series only the contrasts between the new treatments
belonging to different blocks are confounded with block differences and
are estimated with efficiency factor v/(v + a), whereas all other
contrasts are estimated with full efficiency.

Case II. Check treatments are in the linked block design.

A design is called a linked block design if every pair of blocks have
the same number of treatments in common. Let N be the incidence matrix of
a BIB design. Then N’ is the incidence matrix of a linked block design. If
we start with a linked block design as a basic design with b standard
treatments and add s = va new treatments, as explained in case I, then the

resultant design is a S-PEB with parameters v'= b +, av, b’ = Yy r’ =

(k12, avl’)’, k' =r + a, p' = (r +ak - A)/k(r +a), L', p=v - 1.

,Case III. Check treatments in a BIB design.

Let N be the incidence matrix of a BIB design, with v, b, r, k, 1,
then the augmented design obtained, as in the first case, by adding s = ab
new treatments is a PEB design with three efficiency classes and with
losses {r(a + 1) - 1}/{r(k + a)}, a/(k + a) and 0, respectively. The
corresponding idempotent matrices can be easily obtained on the line of
Puri and Kageyama (1985).
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UKLADY CZESCIOWO ZROWNOWAZONE ZE WZGLEDU NA EFEKTYWNOSC
I ICH ZASTOSOWANIA

Streszczenie

Uk!ady czesciowo zréwnowazZone ze wzgledu na efektywnosé (PEB) zostaly
wprowadzone przez Puriego i Nigama (1976). Uklidy takie istniejg dla
zmiennych liczb replikacji i/lub zmiennych pojemnosci blokéw. Praca

prezentuje ich zastosowanie w réZnych dziedzinach,



